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Abstract 

Background: Infiltration is important for the surgical planning and prognosis of pituitary adenomas. Differences in 
preoperative diagnosis have been noted. The aim of this article is to assess the accuracy of machine learning analy-
sis of texture-derived parameters of pituitary adenoma obtained from preoperative MRI for the prediction of high 
infiltration.

Methods: A total of 196 pituitary adenoma patients (training set: n = 176; validation set: n = 20) were enrolled in 
this retrospective study. In total, 4120 quantitative imaging features were extracted from CE-T1 MR images. To select 
the most informative features, the least absolute shrinkage and selection operator (LASSO) and variance threshold 
method were performed. The linear support vector machine (SVM) was used to fit the predictive model based on 
infiltration features. Furthermore, the receiver operating characteristic curve (ROC) was generated, and the diagnostic 
performance of the model was evaluated by calculating the area under the curve (AUC), accuracy, precision, recall, 
and F1 value.

Results: A variance threshold of 0.85 was used to exclude 16 features with small differences using the LASSO algo-
rithm, and 19 optimal features were finally selected. The SVM models for predicting high infiltration yielded an AUC 
of 0.86 (sensitivity: 0.81, specificity 0.79) in the training set and 0.73 (sensitivity: 0.87, specificity: 0.80) in the validation 
set. The four evaluation indicators of the predictive model achieved good diagnostic capabilities in the training set 
(accuracy: 0.80, precision: 0.82, recall: 0.81, F1 score: 0.81) and independent verification set (accuracy: 0.85, precision: 
0.93, recall: 0.87, F1 score: 0.90).

Conclusions: The radiomics model developed in this study demonstrates efficacy for the prediction of pituitary 
adenoma infiltration. This model could potentially aid neurosurgeons in the preoperative prediction of infiltration in 
PAs and contribute to the selection of ideal surgical strategies.
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Background
Pituitary adenomas are common central nervous sys-
tem tumors, accounting for approximately 15–20% 
of all intracranial tumors, with an incidence of 
80–90/100,000 [1, 2]. Invasive pituitary adenomas 
account for approximately 15% of all types of pitui-
tary adenomas. Because these tumors often invade 
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the cavernous sinus, sphenoid sinus, internal carotid 
artery and suprasellar space, it is more difficult to 
surgically remove invasive pituitary adenomas com-
pared with noninvasive pituitary adenomas. Moreover, 
the total resection rate is low, and these tumors eas-
ily relapse after surgery and have a poor prognosis [3, 
4]. When pituitary adenomas are classified as Knosp 
grade 3 or 4 on coronal MRI, it has become a common 
practice to mark them as highly aggressive, and reports 
have clearly noted that a high Knosp grade (> grade 
3) and high recurrence risk are related [5, 6]. In addi-
tion, an increasing number of studies use a high Ki67 
proliferation index (>3%) as evidence of invasion and 
proliferation of invasive pituitary adenomas and to dis-
tinguish invasive pituitary adenomas from noninvasive 
pituitary adenomas [7, 8]. However, the Ki67 prolifera-
tion index is obtained by immunohistochemical analy-
sis of postoperative pathology.

MRI is the best method for imaging diagnosis of 
pituitary adenomas. Given the fact that functional 
pituitary adenomas and nonfunctional pituitary ade-
nomas are initially captured by MRI, the treatment 
plan is different [9–11]. Therefore, when the brain 
MRI examination reveals a pituitary adenoma, espe-
cially when the tumor is small, if noninvasive MRI 
can be exclusively used to identify the function of the 
pituitary adenoma before the operation, this method-
ology can further identify the high invasiveness and 
height of the pituitary adenoma before the opera-
tion. However, the human eye diagnosis of diagnostic 
imaging physicians is limited, and it is impossible to 
identify more subtle tumor features with the naked 
eye. The emergence of radiomics can precisely help 
solve this problem.

Radiomics is an emerging field designed to extract 
a large number of high-dimensional scalable features 
from medical imaging data (possibly combined with 
clinical or genomic data) and establish relevant sta-
tistical models to assist in diagnostic, prognostic, 
and therapeutic monitoring. The radiomics work-
flow includes imaging, ROI segmentation, feature 
extraction and analysis. Then, statistical models 
are subsequently designed based on machine learn-
ing algorithms that must be adjusted according to 
clinical or biological issues and the prior knowledge 
available [12].

This report proposes a method of using radiomics to 
classify MRI images of pituitary tumors based on infil-
tration. We aim to use machine learning algorithms to 
develop a radiomics model that predicts the high inva-
siveness of pituitary adenomas, providing a new preop-
erative evaluation method for patients with pituitary 
adenomas to better formulate treatment strategies.

Methods
Patients
Ethical approval for this retrospective analysis was 
obtained from the science research ethics committee of 
Linyi People’s Hospital, and the need for informed con-
sent was waived. All patients with pituitary tumors who 
underwent surgical resection at our hospital from Febru-
ary 2016 to July 2020 were enrolled.

We collected clinical information of patients, includ-
ing age, sex, preoperative computer MRI images, bilateral 
Knosp classification, preoperative hormones, endocrine 
symptoms, postoperative pathology, and immunohisto-
chemical results. According to the relationship between 
cavernous sinus and the adenoma during operation, we 
define invasiveness tumors as highly aggressive and oth-
ers as not highly aggressive. A Ki67 proliferation index > 
3% was defined as a high Ki67 proliferation index [5, 7]. 
The following inclusion criteria were employed: (1) the 
quality of preoperative computer MRI images is good, 
images lack artifacts, and the images are from the same 
MRI scanner; (2) complete preoperative hormone exami-
nation; and (3) all patients were pathologically confirmed 
as having pituitary adenomas based on immunohisto-
chemistry. The following exclusion criteria were applied: 
(1) patients who received previous surgery, drugs, or 
radiotherapy, and (2) preoperative computer MRI images 
have obvious artifacts. A dataset containing 196 patients 
was obtained (93 males and 103 females, average age: 
52 ± 12.98 years, age range 11–76 years). The dataset 
is divided into three scan bits, including coronal plane, 
transverse plane, and sagittal plane, with 198 samples of 
coronal plane and sagittal plane scans and 196 transverse 
plane samples. The training set (n=176) and the valida-
tion set (n=20) are divided in a ratio of 9:1. Table 1 lists 
the specific characteristics of the patients in the training 
set and validation set. The training set is used for image 
feature construction and model development, and the 
validation set is used for model verification. Our flow 
chart is shown in Fig. 1.

MRI image acquisition
All patients underwent saddle area scans using the same 
MRI scanner (Siemens, 3.0T, Trio, Germany) in our hos-
pital. The imaging schemes included T1-weighted imag-
ing (T1WI), T2-weighted imaging (T2WI), and CE-T1. 
Given that the image resolution of each slice that CE-T1 
may obtain is very high, the contrast difference between 
normal tissue and tumor tissue will increase after the 
injection of the contrast agent [13]. Therefore, in this 
study, we selected the patient images from the archive 
system in our hospital. The CE-T1 image is used for anal-
ysis. The collection and setting parameters of the CE-T1 
sequence are as follows: repetition time/echo time (TR/
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TE) = 232/8.1 ms, slice thickness=2 mm, field of view 
(FOV) = 200 × 200  mm2, and voxel size = 0.9 × 0.6 × 
2.0  mm3.

Tumor segmentation
After the MRI image was examined by a radiologist, the 
ROI of all tumors was segmented by two neurosurgeons 
and radiologists with more than 10 years of experience in 
pituitary adenoma diagnosis and treatment. Two radiolo-
gists (experts 1 and 2 with 11 and 27 years of experience 
in brain MRI, respectively) delineated ROIs while blinded 
to the pathology results using 3D Slicer (https:// www. 
slicer. org). Intersection over union (IOU) was calculated 
to determine the agreement between two radiologists, 
thus evaluating interobserver reproducibility. For cases 
with an IOU greater than 0.8, we chose the delineation 
result from expert 1 as a reference, and the ROIs of the 
remaining cases were then determined by a third expe-
rienced radiologist. Under double-blind conditions, 3D 
Slicer software was used to analyze the coronal posi-
tion (COR), and sagittal (SAG) and axial (TRA) CE-T1 
images were manually depicted. Disagreements arising 
during the analysis were resolved by the two physicians 
through negotiation. Finally, 588 ROIs were divided from 
196 coronal, sagittal, and axial samples for subsequent 
radiomic analysis. In addition, the two physicians evalu-
ated the Knosp classification of all samples in the coro-
nal image under double-blind conditions, and the results 
were consistent.

Feature dimension reduction

1) Image value processing: The voxels of the MRI image 
exhibit large variations over the numerical range. 
Therefore, it is particularly important to reduce the 
variation of the dataset MRI images. The image value 
processing method used in this classification task is 
as follows: Assuming that the set of all voxel values 
of an image is X, the 99% quantile P of pixel values in 
the image region is taken, and the image scaling value 
M is defined. The pixel values in the image are calcu-
lated based on the following equation: window area 
= (X·M)/P. In addition, the Xwin voxel value greater 
than M is equal to M.

2) Processing outlier points: When counting a feature of 
all samples, some feature points deviate far from the 
overall distribution, which affects the classification 
effect of subsequent models, so these outlier points 
are treated as follows. Assuming that a set of a feature 
of the whole sample is F, to take the 99.9% quantile P 
99.9, the F is set to a value greater than P 99.9 val-
ues, and values are all equal to P 99.9. The eigenvalue 
point distribution of the nonprocessed data (Fig. 2A) 
versus the processed data (Fig. 2B) is described as fol-
lows:

3) Resampling: To unify the spacing of all images to 
[0.625, 0.625, 2.4].

4) Multiple ROIs: For this classification task, certain 
pathologies associated with infiltration were present 
in the surrounding areas of the tumor; therefore, the 
task adopted a mask in the original tumor region. The 

Table 1 Patients clinical characteristics (n=196)

std standard deviation. P value < 0.5 represents a significant difference

Characteristic Training set (n=176) Validation set (n=20) Whole set (n=196) P-value

Age (year, mean ± std) 52.43 ± 12.82 48.70 ± 14.05 51.99 ± 12.98 0.224

Gender 0.809

 Male 83 (47.16%) 10 (50.00%) 93 (47.45%)

 Female 93 (52.84%) 10 (50.00%) 103 (52.55%)

Knosp grade 0.608

 Grades 0–2 81 (46.02%) 8 (40.00%) 89 (45.41%)

 Grades 3–4 95 (53.98%) 12 (60.00%) 107 (54.59%)

Hormone hypersecreting tumors 0.707

 Yes 87 (49.43%) 9 (45.00%) 96 (48.98%)

 No 89 (50.57%) 11 (55.00%) 100 (51.02%)

Infiltration 0.419

 High invasion 95 (53.98%) 12 (60%) 107 (60.79%)

 Not high invasion 81 (46.02%) 8 (40%) 99 (39.21%)

Ki67 proliferation index 0.103

 < 3% 120 (68.18%) 10 (50.00%) 130 (66.33%)

 ≥ 3% 56 (31.82%) 10 (50.005) 66 (33.67%)

https://www.slicer.org
https://www.slicer.org
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Fig. 1 Flow chart of this study. I Three scanning positions of the original CE-T1 image: axial, sagittal, and coronal. II Segmentation of ROI. III 
Transform after extracting features from ROI. IV Feature selection and model establishment

Fig. 2 The contrast of handles outlier points. A The distribution of does not process outlier point. B The distribution of processes outlier point
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mask from the area surrounding the tumor was also 
used to obtain this mask. Using the SimpleITK kit or 
Opencv kit, corrosion operations were performed on 
the original mask. Mask_e was obtained to expand 
the original mask, and mask_d was obtained. By sub-
tracting mask_e from mask_d, the mask of the area 
surrounding the tumor was obtained (Fig. 3).

Preprocessing used for classification task
We used a preprocessing method for the infiltration clas-
sification task (Additional file 1).

Feature extraction
Quantitative image features were extracted from MRI 
images using the Pyradiomics library (wavelet param-
eters: rbio1.1, LoG parameters for image value process-
ing: original-mask sigma = 1.0, 2.0, 3.0, 4.0, 5.0, and 6.0; 
edge-mask sigma = 1.0, 2.0, 3.0, 4.0, 5.0, and 6.0; LoG 
parameters for no image value processing: original-mask 
sigma=2.0, 3.0, 4.0, 5.0; edge-mask sigma=1.0, 2.0, 3.0, 
4.0, 5.0, and 6.0) in Additional file 2.

Feature dimension reduction
As described above, a large number of image features can 
be obtained. However, most of these features may be of 
no use for classification tasks. Therefore, it is necessary to 
reduce the features and identify features with high patho-
logical correlation. To reduce redundancy, feature reduc-
tion was performed using the following methods:

The variance threshold method removes the eigenval-
ues with a variance less than the threshold. Using the 
LASSO model, L1 is regularized as a cost function with 
alphas=0.001 and a maximum of 10000 iterations.

Statistical analysis (classifier)
After feature screening, there are multiple supervised 
learning classifiers available for classification analysis 
based on the selected features. In this study, a model 
based on Radiomics is constructed using a linear support 
vector machine (LinearSVM) classifier, and the effective-
ness of the model is verified. Parameter settings for the 
linear support vector machine LinearSVM are noted 
as follows: infiltration: C = 1, random_state = 23, and 
max_iter = 10000. To evaluate predictive performance, 
the operating feature (ROC) curve and curve area (AUC) 
were used in the training and validation datasets. The 
study uses five indicators to evaluate the performance of 
the classifiers: (1) accuracy (ACC), (2) precision (P) ((pre-
cision = true positives/(true positives + false-positives)), 
(3) Recall ® (recall = true positives/(true positives + false 
negatives)), (4) F1 Score (f1 score = P*R*2/(P + R)), and 
(5) support (the total number of samples in the test set).

Results
Clinical characteristics
A total of 196 patients (age, 51.99 ± 12.98 years) were 
enrolled in this study. The characteristics of the patients 
and tumors are shown in Table  1. No significant differ-
ences for all clinic-radiological factors (p = 0.103-0.809) 
were found between the training set and validation set, 
thereby justifying the use of the training set and valida-
tion set.

Statistical results of the datasets
The label distribution of the validation sets and training 
sets for different classification tasks is listed in Table  1. 
In total, 10% of all cases (male to female ratio: 10:10) 
were included in the validation set, and 90% of all cases 
(male to female ratio: 83:93) were included in the training 

Fig. 3 Mask of the area surrounding the tumor. A Mask ROI. B mask_edge ROI
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set. In the validation set, 12 cases were highly invasive, 
accounting for 60% of all cases. Eight cases were not 
highly invasive, accounting for 40% of all cases. In the 
training test, 95 cases were highly invasive, accounting 
for 54% of all cases, and 81 cases were not highly invasive, 
accounting for 46% of all cases.

Feature screening results
A total of 4120 quantitative imaging features were 
extracted from the three scanning positions of contrast-
enhanced T1-weighted imaging (CE-T1). For highly 
invasive classification tasks, a variance threshold of 0.85 
was used to exclude 16 features with small differences 
using the LASSO algorithm (Fig. 4), and 19 optimal fea-
tures were finally selected (Table 2). The following lasso 
parameter settings were employed: alphas=0.001, max_
iter (10000).

Model performance
Figure 5 shows the ROC curves of the classification task. 
Table 3 shows the AUC, sensitivity, and specificity of dif-
ferent classification tasks in the training set and valida-
tion set (“T” represents “Yes,” “F” represents “None”). The 
radiomics model showed good discrimination. For highly 
invasive classification tasks, the AUC of the training set 
was 0.86 (95% confidence interval: 0.75–1.00), the sen-
sitivity was 0.81, and the specificity was 0.79. The AUC 

of the validation set was 0.73 (95% confidence interval: 
0.53–0.94), the sensitivity was 0.87, and the specificity 
was 0.80. The results show that the radiomics model we 
established is feasible for distinguishing highly aggressive 
pituitary adenomas.

The classifier evaluation results
We summarized the four evaluation indicators of the pre-
diction model (accuracy rate, precision rate, recall rate, 
and F1 value). As shown in Table 3, the model achieved 
good diagnostic capabilities in the training set and inde-
pendent verification set. Specifically, the accuracy was 
0.80, the precision was 0.82, the recall was 0.81, and the 
F1 score was 0.81 in the training set. In addition, the 
accuracy was 0.85, the precision was 0.93, the recall was 
0.87, and the F1 score was 0.90 in the independent verifi-
cation set.

Discussion
Based on MRI, this study used radiomics to develop 
a radiomics model that predicts the high invasiveness 
of pituitary adenomas and achieved good results. The 
results demonstrate that the radiomics model predicts 
the invasiveness of pituitary adenomas. The model exhib-
its good potential for predicting highly invasive pituitary 
adenomas. This information may help clinicians assess 
the nature of the tumor before surgery and better formu-
late treatment strategies.

Fig. 4 Weights obtained by lasso method in the classification task with high infiltration
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The concept of radiomics was first proposed by Dutch 
scholar Philippe Lambin and has been applied to the 
prediction and evaluation of a variety of tumors, such 

as colorectal cancer, lung cancer, and prostate cancer 
[14–19]. In recent years, radiomics has also been con-
firmed to exhibit increasing potential in the preoperative 

Table 2 Features selected for validation classification task

Features selected for validation classification task

Radiomic feature Radiomic class Filter Mask

Maximum2DDiameterSlice shape original original

LowGrayLevelZoneEmphasis glszm log-sigma-5-0 original

Skewness firstorder wavelet-LLH original

Maximum firstorder wavelet-LHH original

Minimum firstorder wavelet-LHH original

ZoneEntropy glszm wavelet-LHH original

MCC glcm wavelet-HLL original

Minimum firstorder wavelet-HLH original

Kurtosis firstorder wavelet-HHL original

SmallDependenceLowGrayLevelEmphasis gldm wavelet-HHL original

Mean firstorder wavelet-HHH original

Flatness shape original egde

DependenceEntropy gldm log-sigma-1-0 egde

GrayLevelNonUniformity glszm log-sigma-4-0 egde

Busyness ngtdm wavelet-LHH egde

LargeDependenceHighGrayLevelEmphasis gldm wavelet-HLL egde

SizeZoneNonUniformityNormalized glszm wavelet-HHH egde

Contrast ngtdm wavelet-HHH egde

SmallDependenceLowGrayLevelEmphasis gldm wavelet-HHH egde

Fig. 5 ROC curve of high infiltration classification task. A Training set. B Validation set (“T” stands for “Yes,” “F” stands for “None”)
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diagnosis of pituitary adenomas. The radiomics model 
established by Zhang et al. is used to distinguish subtypes 
of nonfunctional pituitary adenomas before surgery, and 
the model performs well [2]. Fan et  al. applied radiom-
ics to predict the response of patients with acromegaly 
to radiotherapy [20]. Niu et  al. developed a radiomics 
model that predicted the invasion of pituitary adenomas 
on the cavernous sinus [21]. Peng et al. [22] developed a 
machine learning model for predicting the immunohis-
tochemical classification of pituitary adenomas before 
surgery.

In this study, based on preoperative CE-T1 images of 
patients with pituitary adenomas and using machine 
learning methods, we developed a radiomics model that 
predicts the high invasiveness of pituitary adenomas. The 
good AUC value of the final training set and the valida-
tion set demonstrated its potential value in the prediction 
of high invasiveness of pituitary adenoma, and its reli-
ability was verified by calculating the index of the classi-
fier. Niu et al. identified a radiomics nomogram based on 
CE-T1 and T2 MR images for the individualized evalua-
tion of cavernous sinus invasion in 194 patients with PAs 
(Knosp grades two or three) [21]. The radiomics model 
yielded area under the curve (AUC) values of 0.852 and 
0.826 for the training and test sets, respectively. In con-
trast, our study enrolled patients to predict high inva-
siveness (cavernous sinus invasion). We calculated the 

area under the curve (AUC), accuracy, precision, recall, 
and F1 value to evaluate the diagnostic performance, but 
the performance of the two models needs to be further 
compared.

A very important issue in the application of radiomics 
is the selection of the best features. Unlike some previ-
ous studies [15, 16, 18, 23, 24], our research uses some 
innovative methods. First, in the application of image 
data, our study takes into account the clinical domain 
knowledge. For ROI segmentation, three window posi-
tions, including coronal, axial, and sagittal, were included 
to minimize errors and improve three-dimensional fea-
tures. Second, regarding the microenvironment around 
the tumor, a mask expansion method is used when pre-
processing the data. Third, in the feature extraction 
method, filter transformation is used in addition to the 
original features to extract finer texture features. These 
results laid the foundation for the good performance of 
the model.

Our research has some limitations. First, our research 
was conducted at a single center. All image data were 
obtained from the same machine in a hospital. Whether 
our model is suitable for multicenter research remains to 
be demonstrated. In the future, we need to test the imag-
ing data from different centers to validate our model. In 
addition, all ROI annotations are performed manually, 
which is time-consuming. Given the availability of more 
sample sets in the future, if an automatic segmentation 
algorithm can be created, an end-to-end application can 
be formed. Therefore, we need to identify an accurate 
automatic segmentation algorithm. Third, research has 
revealed that the consistency of T2-weighted images may 
be better25. In our study, only CE-T1 images were used, 
and no comparison with other sequences was performed.

Conclusion
In summary, we used radiomics to create a predictive 
model of highly invasive pituitary adenomas, and inde-
pendently verified its reliability in the validation set. In 
the future, the number of samples will be increased, and 
the model will be continuously optimized. The diagnostic 
ability of the model is expected to be further improved, 
and this model may help neurosurgeons formulate better 
treatment strategies.
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ACC : Accuracy; AIC: Akaike’s information criterion; AUC : Area under the curve; 
BIC: Bayesian information criterion; CE-T1: Contrast-enhanced T1-weighted; CI: 
Confidence interval; CS: Cavernous sinus; DCA: Decision curve analysis; FOV: 
Field of view; LASSO: Least absolute shrinkage and selection operator; MRI: 
Magnetic resonance imaging; PAs: Pituitary adenomas; ROC: Receiver operat-
ing characteristic curve; ROIs: Regions of interests; SSA: Somatostatin analogs; 
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Table 3 Results of ROC curve analysis and five indicators in the 
training set and verification set

Training set Verification set

Indicators Infiltration Indicators Infiltration

T AUC 0.86 AUC 0.73

95% CI 0.75–1.00 95% CI 0.53–0.94

Sensitivity 0.81 Sensitivity 0.87

Specificity 0.79 Specificity 0.80

Accuracy 0.8 Accuracy 0.85

Precision 0.82 Precision 0.93

Recall 0.81 Recall 0.87

F1-score 0.81 F1-score 0.90

Support 94 Support 15

F AUC 0.86 AUC 0.73

95% CI 0.75–1.00 95% CI 0.53–0.94

Sensitivity 0.79 Sensitivity 0.80

Specificity 0.81 Specificity 0.87

Accuracy 0.8 Accuracy 0.85

Precision 0.78 Precision 0.67

Recall 0.79 Recall 0.80

F1-score 0.79 F1-score 0.73

Support 82 Support 5
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