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Abstract

Background: Low-grade gliomas (LGG) are WHO grade II tumors presenting as the most common primary
malignant brain tumors in adults. Currently, LGG treatment involves either or a combination of surgery, radiation
therapy, and chemotherapy. Despite the knowledge of constitutive genetic risk factors contributing to gliomas, the
role of single genes as diagnostic and prognostic biomarkers is limited. The aim of the current study is to discover
the predictive and prognostic genetic markers for LGG.

Methods: Transcriptome data and clinical data were obtained from The Cancer Genome Atlas (TCGA) database. We
first performed the tumor microenvironment (TME) survival analysis using the Kaplan-Meier method. An analysis
was undertaken to screen for differentially expressed genes. The function of these genes was studied by Gene
Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis.
Following which a protein-protein interaction network (PPI) was constructed and visualized. Univariate and
multivariate COX analyses were performed to obtain the probable prognostic genes. The key genes were selected
by an intersection of core and prognostic genes. A clinical correlation analysis of single-gene expression was
undertaken. GSEA enrichment analysis was performed to identify the function of key genes. Finally, a single gene-
related correlation analysis was performed to identify the core immune cells involved in the development of LGG.

Results: A total of 529 transcriptome data and 515 clinical samples were obtained from the TCGA. Immune cells
and stromal cells were found to be significantly increased in the LGG microenvironment. The top five core genes
intersected with the top 38 prognostically relevant genes and two key genes were identified. Our analysis revealed
that a high expression of HLA-DRA was associated with a poor prognosis of LGG. Correlation analysis of immune
cells showed that HLA-DRA expression level was related to immune infiltration, positively related to macrophage
M1 phenotype, and negatively related to activation of NK cells.

Conclusions: HLA-DRA may be an independent prognostic indicator and an important biomarker for diagnosing
and predicting survival in LGG patients. It may also be associated with the immune infiltration phenotype in LGG.
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Background
Glioma is a common primary intracranial neuroepithe-
lial tumor occurring in the brain and arising in glial tis-
sue. Low-grade gliomas are generally referred to as
WHO grade 3. Routine histopathological classification of
gliomas [1]. However, the identification of key molecular
alterations has led to substantial changes in the updated
2016 WHO Classification of Tumors of the CNS, such
as IDH 1 and 2 mutations and 1p/19q codeletion [2, 3].
As such, the term “low-grade gliomas” is now often used
to refer to both grade 2 and 3 gliomas, consistent with
The Cancer Genome Atlas Project categorization. Mo-
lecularly altered gliomas are a heterogeneous group of
primary brain tumors that vary not only in malignancy
but also in histology and genomic alterations. They may
arise from neural stem cells (NSCs), NSC-derived astro-
cytes, or oligodendrocyte precursor cells [4].
Low-grade gliomas are treated through surgery,

chemotherapy, and/or radiation therapy. Despite the
availability of therapeutic options, the possibility of re-
currence exists [5]. Some of the factors that may con-
tribute to ineffective treatment are the inability in
getting around the blood-brain barrier for efficient drug
delivery, overcoming immune-suppressive tumor micro-
environment (TME), and development of drug resistance
[6]. Significant advances have been made towards asses-
sing the tumor microenvironment and have been used
for treating LGG [7]. Recently, several immunotherapy
methods have been shown to be successful in treating
malignant tumors. Some of these include immune
checkpoint blockade, cytokine therapy, cell therapy, and
therapeutic vaccines [8]. But response rates vary between
tumor types and within tumors. The variability in re-
sponse limits the non-personalized use of immunother-
apy for LGG [8]. The success of immunotherapy is thus
dependent on a better understanding of the glioma-
specific immune microenvironment [9]. While the gen-
etic basis of gliomas is well-established, the utility of
gene therapy in the field is less explored which can help
overcome some of the therapeutic challenges and influ-
ence relapse rates in LGG. These gaps in the existing lit-
erature necessitate more research towards identifying
new biomarkers and their applicability as therapeutic
agents for LGG [10].
The major histocompatibility complex, class II, DR

alpha (HLA-DRA) is a protein-coding gene. HLA-DRA
is often associated with the occurrence of Graham-
Little-Piccardi-Lassueur syndrome and penicillin allergy.
The relevance of Parkinson’s disease with the HLA-DRA
was also verified in a cohort of the Iranian population
[11]. In addition, Lee et al. verified an intergenic variant
rs9268877 between HLA-DRA and HLA-DRB contribut-
ing to the clinical course and long-term outcome of ul-
cerative colitis [12]. Chu et al. verified that HLA-DRA

was a potential prognostic biomarker for renal clear cell
carcinoma [13]. However, HLA-DRA has not been re-
ported in LGG.
In this study, first, we explored the differential expres-

sion of HLA-DRA in LGG tissues. We correlated the ex-
pression of HLA-DRA and immune correlation in the
LGG dataset of The Cancer Genome Atlas (TCGA) to
ascertain the significance of HLA-DRA expression
within the tumor samples. In addition, we performed
GO, KEGG, COX, HPA, GSEA, and meta-analysis to as-
sess the overall prognostic significance of HLA-DRA
using data from TCGA databases and CGGA databases.
Further, as substantial attention has been focused on the
crucial role of the immune microenvironment in the
progression of LGG [9, 14, 15], we also evaluated the po-
tential correlation between HLA-DRA and immune infil-
tration levels in LGG by applying tools from the R
software to data from the TCGA database.

Methods
Access to TCGA datasets
The gene transcriptome data tissues involving 529 sam-
ples and clinical data involving 515 samples were down-
loaded from The Cancer Genome Atlas (TCGA)
database (https://portal.gdc.cancer.gov/) [16]. Clinical
data collected included gender, age, grade, survival sta-
tus, and duration of survival. Our study was in line with
the publication guidelines provided by TCGA [17].

Survival analysis of microenvironment
We compiled the transcriptome data using Perl (https://
www.perl.org/). Similarly, the clinical data was summa-
rized. ESTIMATE was used to assess the immune cell
infiltration levels (measured as immune score) and stro-
mal content (measured as stromal score) per sample.
The aforementioned analysis was undertaken using the
Limma and the Estimate package of the R software. Fur-
thermore, microenvironmental survival analysis was per-
formed using the survival package of the R software. The
samples were grouped into high and low grade based on
their median score. Meanwhile, the corresponding p-
value and the number of patients at each time point
were determined. The survival curve was plotted using
the R software with the following screening criterion: adj
p < 0.001. To verify the correlation between tumor
microenvironment and LGG, we conducted a clinical
correlation analysis of the microenvironment; the box-
plot was plotted using the R package ggpubr.

Differential analysis
Based on the ESTIMATE analysis, we sub-grouped pa-
tients as high and low, based on their immune and stro-
mal score, respectively [15]. Differential expression
analysis was performed between the high and low
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immune score groups and high and low stromal score
groups by using the R package, with filter conditions of
log2 |fold change| = 2 and false detection rate = 0.001.
Heatmap and clustering were generated by using the
“pheatmap” R package [15]. The intersection of differen-
tial gene results was obtained, and the Venn diagram of
the differential gene was plotted. Subsequently, the clin-
ical correlation was analyzed between stromal and im-
mune cell scores.

Gene Ontology and Kyoto Encyclopedia of Genes and
Genomes enrichment analysis
We used the “ClusterProfiler” R package for functional
enrichment analysis of differential genes to identify the
potential functions and pathways [18]. Enrichment of
genes was conducted by Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG). p-value <
0.05 and q-value < 0.05 were considered as statistically
significant.

Protein–protein interaction (PPI) network
The PPI network was built using a search tool that re-
trieves a database of interacting genes (STRING) [19],
and the minimum required interaction score was set to
0.95. We analyzed and visualized the network via Cytos-
cape software(https://cytoscape3.7.2.org/download.html)
[20]. Network characteristics such as the number of core
proteins the and interplay between different proteins
were studied.

COX regression model
Univariate and multivariate COX regression analysis and
forest plots were plotted using the “forest plot” R pack-
age to display the p-values and hazard ratios (HRs) for
each variable. Based on the results of COX analysis,
prognostic-related genes were identified.

Key gene acquisition
Through the intersection of PPI core genes and prog-
nostic genes, we obtained the most probable key prog-
nostic genes and plotted the Venn diagram of
differential genes using the “VennDiagram” R package.
To verify the prognostic correlation, we performed a
survival analysis of the key gene by the survival package
of the R software. LGG patients were divided into two
groups of high and low expression according to the me-
dian value of gene expression, and the survival correl-
ation was verified by comparing the postoperative
differences between the high and low gene expression
groups. The survival plot was drawn using “ggplot.” To
verify the clinical relevance, the samples were divided
into two groups according to age, gender, and grade,
and the differences in the key gene expression levels

were compared. A p < 0.05 was considered as statisti-
cally significant.

Human Protein Atlas
The Human Prote in At las (HPA, ht tps : / /www.
proteinatlas.org/) is a protein database that provides tis-
sue and cellular distribution information for 26,000 hu-
man proteins [21]. In this study, we used the HPA to
verify the HLA-DRA gene expression in glioma cells and
glial brain cells.

Gene set enrichment analysis
To explore the effects of the function or pathway of the
gene expression in the tumor, samples were divided into
two groups of high and low gene expression. Enrichment
of the KEGG pathways in the high- and low-expression
groups was further analyzed using the GSEA (ttp://
software.broadinstitute.org/gsea/downloads.jsp) tool.
The filter condition was set to 50, and the first 5 path-
ways were selected from the 50 enrichment pathways for
multi-pathway enrichment analysis.

Meta-analysis of the included studies
The RNA expression matrix and clinical data of low-
grade glioma came from the TCGA database (ID: TCGA
LGG) and CGGA database (http://www.cgga.org.cn/,
Dataset ID: mRNAseq_693 and mRNAseq_325). All data
were corrected using the “limma” package in R. Clinical
correlation analysis and univariate COX analysis were
performed by the R. We got three COX files. Then, a
meta-analysis was conducted using the R software to
verify the correlation between the HLA-DRA gene and
the prognosis of LGG. Heterogeneity was tested by Q-
statistic and I2 statistic, I2 > 50% was considered as a sig-
nificant heterogeneity, the random-effects model or the
fixed-effects model was adopted, and p < 0.05 indicated
that there were statistical significances.

Immunological correlation analysis
The type and the relative number of immune cells in
each tumor sample were visualized and plotted as a cor-
relation curve by CIBERSORT [22]; the filter condition
was set to a p-value = 0.05. Sample data with p < 0.05
were retained. Differential and correlation analyses were
used to verify the correlation of immune cells and gene
expression. The samples were divided into two groups of
high and low gene expression. The presence of immune
cells was comparatively analyzed between the two
groups of high and low expression. The results obtained
by the two analytical methods were intersected, to finally
attain expressed immune cells in response to specific
genes.
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Statistical analysis
All analyses were performed using the R software and
Perl. A p-value < 0.05 was considered statistically
significant.

Results
Tumor microenvironment with the prognosis of LGG
Transcriptome data (n = 529) and 515 clinical data ex-
tracted from the TCGA database were included in this
study. An ESTIMATE analysis was performed. We
found that the immune score of the selected samples
was distributed between − 1681.2 and 2466.40, and the
stromal score was distributed between − 1774.32 and
1701.59. By Kaplan-Meier analysis, we verified that the
tumor microenvironment significantly correlated with
survival in LGG patients (Fig. 1A). The clinical relevance
of the microenvironment was also verified (Fig. 1B). As
shown in the figure, the presence of stromal cells and
immune cells in the tumor microenvironment is associ-
ated with the survival of the patient.

Screening for differential genes
Differential analyses on stromal cells were performed to
screen out upregulated genes and downregulated genes.
Based on the comparative scores, we found 200 genes
that were upregulated and 6 genes that were

downregulated. Similarly, we performed a differential
analysis on immune cells and found 145 genes that were
upregulated and 65 genes that were downregulated. Fol-
lowing which we plotted a heatmap using the fold
change and corrected p-value (Fig. 2A, B). The intersec-
tion of upregulated genomes was considered to ascertain
differentially expressed genes. We found 117 genes that
were upregulated (Fig. 2C).

Functional enrichment analysis of differential genes
Upon undertaking a GO and KEGG enrichment analysis
of the differentially expressed genes, we found that these
genes were mainly responsible for T cell activation,
leukocyte-mediated immunity, positive regulation of
cytokine production, and cytokine−cytokine receptor
interaction.

Screening of hub gene
We obtained a protein interactome for the differential
genes using the String database. The network was visual-
ized and analyzed using the Cytoscape software. The
analysis yielded 30 core genes. The COX analysis, per-
formed on each sample, reveals 38 prognostically rele-
vant genes. We took the top five genes with the most
nodes in the PPI and the 38 genes associated with prog-
nosis to build the intersection. The Venn diagram

Fig. 1 A Survival analysis of immune cells and stromal cells and comprehensive survival analysis. It is shown that the tumor microenvironment is
associated with survival in LGG patients; the higher the content of stromal cells and immune cells, the worse the prognosis. p < 0.05 represents
clinical significance. B The content of stromal cells and immune cells in the tumor microenvironment is independent of the patient’s age and sex
and is related to the patient’s tumor grade. Patients presenting with grade III had higher levels of both
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yielded two key genes HLA-DRA and CD74 (Fig. 2D).
Since high expression of CD74 in gliomas has been vali-
dated for the association with poor prognosis and high
immune infiltrates [23]. We proceeded with our analysis
with HLA-DRA. Single-gene survival analysis showed p
< 0.05, indicating that HLA-DRA gene expression was
related to patient survival, and the high expression group
predicted poor prognosis (Fig. 3A). Single-gene clinical
correlation analysis showed that HLA-DRA expression
was unrelated to age and gender. We found a positive

correlation between the expression of HLA-DRA and
LGG (Fig. 3B–D).

Human Protein Atlas
To verify the differences in the HLA-DRA gene expres-
sion in tissues, we used the HPA to analyze the HLA-
DRA gene expression in the glial cells and brain. We
found that the HLA-DRA gene was not expressed in
normal glial cells (patient ID: 1371; 3731; 3739) but was
highly expressed in glioma cells (patient ID: 3137; 3120;

a

b

c

d

Fig. 2 Differential analysis screens for differential genes. A Heat map of stromal cell difference genes. B Heat map of immune cell differential
genes. Venn plot of the upregulated gene. C There are 117 intersecting genes. D The upregulation differential genes were visualized by protein
interaction network analysis. COX analysis was performed for the differentially expressed genes. The intersection of the two analysis results is
obtained. The intersection result is the core genes DLA-DRA and CD74
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3174). The results of immunohistochemical staining
were shown in Fig. 4A, B.

Gene set enrichment analysis
The biological properties of HLA-DRA in LGG were an-
alyzed by the GSEA enrichment method. The GSEA re-
sults showed that a high expression of HLA-DRA is
mainly associated with cancer-associated cellular im-
munity whereas low expression is mainly associated with
substance metabolism.

Meta-analysis of the included studies
Clinical correlation analysis and univariate COX analysis
were performed by the R. We got three COX files. Then,
three COX documents were meta-analyzed by the meta

package of R. The meta-analysis results were shown in
Fig. 5A.

Gene-related immune cells
CIBERSORT [24] (http://cibersort.stanford.edu/) is a
gene expression-based deconvolution algorithm that
evaluates the expression changes of a group of genes
relative to all other genes in the sample. Thus, the num-
ber of immune cells in each sample can be accurately
enumerated through this process. The continued per-
formance of CIBERSORT has prompted reliance on its
utility to cellular heterogeneity research [25, 26]. Im-
mune cell visualization and immune cell correlation ana-
lysis were performed by calculating the immune cell
content by CIBERSORT. We found a differential

a

b

c

d

Fig. 3 Single gene survival analysis and clinical correlation analysis were performed for gene HLA-DRA. A The results of survival analysis showed
that HLA-DRA was correlated with the survival and prognosis of patients, and the prognosis of patients with high expression of HLA-DRA was
worse. B–D Clinical correlation analysis showed that single gene expression was not correlated with gender and age, positive correlation with
tumor grade
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expression of immune cells between the groups showing
high and low gene expression. The correlation analysis
verified the association between immune cell content
and gene expression. Based on the differential analysis
method, we found 12 types of immune cells. Based on
the correlation analysis method, we found 9 types of im-
mune cells. Of which we found an overlap of seven dif-
ferent immune cells, namely, plasma cells, activated
natural killer (NK) cells, monocytes, macrophages M1
and M2 polarized, eosinophils, and activated mast cells.

Discussion
Significant progress has been made in the treatment of
glioma with postoperative chemotherapy, radiotherapy,
and/or immune intervention, but the prognosis for pa-
tients with glioma continues to remain dismal. Over the
past 30 years, epidemiological studies have shown that
the overall survival rate of patients with glioma has been
poor [27], and this seemingly has changed very little
with advances in recent clinical practices involving

immunotherapeutic approaches [28–30]. A better under-
standing of the tumor immune microenvironment is
critical to improving the efficacy of current immuno-
therapies. Gene therapies have also been evaluated in
preclinical and clinical settings [31, 32]. While off-target
effects are a major concern for gene therapy, localized
management of drugs and recently more advanced gene-
editing tools have significantly increased the convenience
and specificity of gene editing [33]. Therefore, there is
still a need to accelerate research in the treatment of
gliomas.
We used data from TCGA database and CGGA data-

base and analyzed it using tools from the R language
and Perl, to provide some verification for tumor micro-
environment (TME) in low-grade glioma (LGG) and to
identify key genes associated with prognostic immunity.
First, we calculated the immune and stromal scores for
each sample using the R software and found that the
stromal cell and immune scores correlated significantly
with LGG prognosis. The results showed that the

Fig. 4 A, B Immunohistochemical analysis using HPA showed that the gene HLA-DRA was not expressed in early normal glioma cells (patient ID:
1371; 3731; 3739), but was highly expressed in glioma cells (patient ID: 3137; 3120; 3174)

Fig. 5 Clinical correlation analysis and univariate COX analysis were performed by the R. We got three COX files. Then, three COX documents
were meta-analyzed by the meta package of R (heterogeneity: I2 = 91%, p < 0.01). The results show that HLA-DRA is highly uniform in the two
databases. The reliability of the laboratory has been fully verified
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stromal cells and immune cell scores of grade III gliomas
were higher in comparison with grade I and II gliomas.
This suggests that TME is associated with LGG tumor
progression and disease prognosis.
Then, we performed a differential expression analysis

on the high and low immune scoring groups and the
stromal scoring group and identified 416 differentially
expressed genes. Of which, 117 genes were found to be
upregulated and six genes were found to be downregu-
lated. The GO and KEGG analysis revealed that most of
these genes were involved in the immune processes. The
results show that immune cells and stromal cell in the
LGG microenvironments are closely related which are
concordant with previous findings [34, 35]. Through an
R analysis, we obtained 123 related but differentially
expressed genes. The protein–protein interactome (PPI)
network explored the network relationship between sur-
vival genes and used Cytoscape for visualization. Signifi-
cantly high network nodes, IL10, CCL2, CD74, and
HLA-DRA, were found to be responsible for tumorigen-
esis, macrophage enrichment, and immune response
among others [36–38]. Thirty-eight prognostic genes
were obtained by the COX analysis, and then, the top
five genes with the most nodes were selected from the
PPI network. The intersection of the two genes was used
to obtain the core gene HLA-RDA. Clinical correlation
analysis of HLA-DRA showed that there was higher ex-
pression of HLA-DRA in grade III, which indicated that
HLA-DRA could promote tumor development and serve
as a reference for the utility of gene therapy in glioma.
Then, we used the HPA to verify the HLA-DRA gene
expression in glioma cells and glial brain cells. The re-
sults showed that HLA-DRA was not expressed in gli-
oma cells but significantly expressed in glioma cells.
This demonstrated the possibility of HLA-DRA as a new
biomarker. The GSEA results showed that a high expres-
sion of HLA-DRA is mainly enriched in cancer-related
cellular immunity whereas low expression is mainly
enriched in substance metabolism. To better verify the
reliability of the study, we adopted multiple databases
for meta-analysis. The results show that HLA-DRA is
highly uniform in the two databases. The results of im-
mune cell correlation analysis showed that HLA-DRA
was associated with a variety of immune cell infiltrates.
This may indicate that HLA-DRA expression is corre-
lated with multiple immune pathways or immune-
related genes. At the same time, it provides a reference
direction for future research.
From what has been discussed above, our results sup-

port the association of HLA-DRA with prognosis and
immune infiltration of LGG. The mechanism of HLA-
DRA in gliomas is not currently known, but our study
validates the relevance of HLA-DRA to the tumor im-
mune microenvironment. Further investigation into the

association of HLA-DRA in the prognosis of LGG may
allow to evaluate its utility as a potential therapeutic
tool.

Conclusions
In this study, we identified the gene HLA-DRA as an in-
dependent prognostic marker for LGG based on bio-
informatics analysis. The results showed that with the
occurrence of LGG, the content of stromal cells and im-
mune cells in the microenvironment increased. The high
expression of HLA-DRA is associated with the poor
prognosis of LGG, and the high expression of HLA-DRA
is closely related to the immune cells in the
microenvironment.
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