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Abstract

Transcranial magnetic stimulation (TMS) is a noninvasive neurophysiologic technique that can stimulate the human
brain. Positioning of the coil was often performed based merely on external landmarks on the head, meaning that
the anatomical target in the cortex remains inaccurate. Navigated transcranial magnetic stimulation (nTMS)
combines a frameless stereotactic navigational system and TMS coil and can provide a highly accurate delivery of
TMS pulses with the guidance of imaging. Therefore, many novel utilities for TMS could be explored due to the
ability of precise localization. Many studies have been published, which indicate nTMS enables presurgical
functional mapping. This review aimed to provide a comprehensive literature review on nTMS, especially the
principles and clinical applications of nTMS. All articles in PubMed with keywords of “motor mapping,” “presurgical
mapping,” “navigated transcranial magnetic stimulation,” and “language mapping” published from 2000 to 2018
were included in the study. Frequently cited publications before 2000 were also included. The most valuable
published original and review articles related to our objective were selected. Motor mapping of nTMS is validated
to be a trustful tool to recognize functional areas belonging to both normal and lesioned primary motor cortex. It
can offer reliable mapping of speech and motor regions at cortex prior to operation and has comparable accuracy
as direct electrical cortical stimulation. nTMS is a powerful tool for mapping of motor and linguistic function prior to
operation, has high application value in neurosurgery and the treatment of neurological and psychiatric diseases,
and has gained increasing acceptance in neurosurgical centers across the world.
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Main text
Since the introduction for stimulating the human motor
cortex by transcranial magnetic stimulation (TMS) in
1985 [1], TMS has been applied in studying the process-
ing of cortex information and treating psychiatric and
neurologic diseases [2–6]. However, how to precisely lo-
cate the magnetic coil at cortical regions remains a
major obstacle in relevant investigations. In most cases,
the anatomic features of involved subjects were not
taken into consideration in TMS studies, so it is very dif-
ficult to reach the intended area accurately [7].
In the past decades, a combination of optically tracked

stereotactic navigation systems and TMS technology was

developed. This system can form a picture of the stimu-
lation sites through the three dimensions (3D) rebuilt
MRI data of the subjects’ brain, which was therefore
named as navigated transcranial magnetic stimulation
(nTMS) [8, 9]. NTMS has been tested for mapping of
the motor cortex prior to operation and is widely ac-
cepted by neurosurgeons [10–12]. Motor mapping by
nTMS correlate well with mapping of direct electrical
stimulation (DES) during surgery, especially when com-
pared to other preoperative mapping methods such as
functional magnetic resonance imaging (fMRI) or mag-
netoencephalography [13, 14]. In recent years, nTMS
has been widely used in motor mapping, and more evi-
dence shows that it is beneficial for patients with brain
tumor. Many studies observed better outcomes and
higher survival rates in brain tumor patients who use
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nTMS before surgery, thus expanding the initial role of
nTMS as a mere preoperative planning tool [15, 16].
We review the basic principles and clinical applica-

tions of nTMS, protocols for motor and language map-
ping, comparison between nTMS and other preoperative
mapping modalities, and future applications of nTMS,
so as to improve the understanding and clinical applica-
tion of nTMS.

Electric-field navigation and line navigation
Many techniques can be applied to the navigation of
TMS. They can be divided into two groups, namely,
line-navigated transcranial magnetic stimulation
(Ln-TMS) and electric-field navigated transcranial mag-
netic stimulation (En-TMS). Ln-TMS exhibits the loca-
tion of the coil while not showing coil angulation in
relation to the patient’s head. The stimulation spot is as-
sumed to be on the line that passes through the geomet-
ric center of the coil and is perpendicular to the coil
surface [17], and if the coil is not perfectly tangential
with respect to the skull, the target would be imprecise
[18]. En-TMS can calculate the electric field on the cor-
tex while stimulating. It can visualize and calculate the
electric field with its dose and orientation, as well as
optimize the coil positioning continuously. The reso-
lution of En-TMS reaches 2 mm [11, 16]. At present,
only the En-TMS system could be used for
tumor-patient diagnostics [11–13, 19–21]. As what were
already clarified for En-TMS, more investigations using
intraoperative DES are needed to determine whether
Ln-TMS can produce motor mapping with high specifi-
city and accuracy in neurosurgical operations.

Motor mapping and speech mapping protocols
Preparation for the session:
Upload individual MRI data and use them to generate

a 3D head model. Match the 3D head model with the
patients’ head (Fig. 1).
Hot spot identification:
The rapid changes of transcranial magnetic field pro-

duce electric current at a specific region at the cortex,
leading to a corresponding motor evoked potential
(MEP) [22]. Hot spot identification is the search for the
cortical sites producing maximum MEPs [23, 24].
RMT (resting motor threshold) determination:
RMT refers to the lowest intensity of TMS which is

able to elicit a 50-μV MEP in a relaxed small hand
muscle in 5 out of 10 stimulations. The target muscle
should be at rest, and monitoring of muscle activity is
critical during the determination of the RMT [25].
Set the stimulate mode to single pulse TMS and set

the output of stimulator to 110% RMT when doing
motor mapping. Stimulate the central sulcus, precentral
sulcus, postcentral sulcus, and precentral gyrus with a

2–3-mm interval [26]. Mark the nTMS positive spots on
the cortex (Fig. 1).
Most language mapping protocols use object naming

and navigated repetitive TMS (nrTMS) combined with
video recording of the behavioral results. The stimulate
strength is 100–120% of the RMT for the hand muscles.
The stimulate spot is not restrained to conventional re-
gions stated by the Geschwind’s language model [27, 28]
The corresponding nrTMS locations in the parcellated
cortex are marked as language-related and are tagged by
the observed error type [29, 30].

Safety issue
It has been proved that nTMS is safe in both normal sub-
jects and patients with intracranial lesions. The only abso-
lute contraindication of nTMS is the presence of metal or
electronic devices, such as cochlear implants, pulse gener-
ators, and medical pumps, near the coil stimulation site,
which are at risk of being destroyed [31]. A cohort study
involving 733 patients showed that nTMS was well toler-
ated in motor mapping, with only 6% of patients feeling
unwell. In language mapping, as nrTMS was used, 93% of
the patients felt uncomfortable and 70% of the patients
felt pain. The discomfort of repetitive stimulation was
mainly caused by contraction of the temporalis muscle
and orbicularis oculi muscle and direct stimulation of tri-
geminal nerve sensory branches [32, 33]. There are few re-
ports on seizure induced by single-pulse TMS in patients
with neurological diseases; therefore, it should be noted
that patients with cerebral lesions might still have a high
risk of seizure induced by TMS [34].

Comparison between nTMS and direct electrical cortical
stimulation
DES has always been accepted as the gold standard for
motor mapping and language mapping [35]. It was re-
ported that motor activation points detected by nTMS
were closely associated with those found in DES [36,
37]. One meta-analysis reviewed six studies with a total
of 81 patients and summarized that the mean distance
of motor cortex identified on DES and nTMS was 6.18
mm [37]. Two other studies mapped the motor cortex in
patients with growing malignant and large tumors, and
they found that the distances of DES and nTMS were
10.5 mm and 7.83 mm, respectively [11, 12]. Pavia re-
ported a distance of approximately 4 mm in a group of
patients with low-grade gliomas. This may be explained
by deficiency of accompanied edema and the relative
small size of the lesions [38].
Language mapping conducted by NrTMS has shown

close association with DES, and compared with DES,
nTMS has a sensitivity value of 90%, specificity of 98%,
negative predictive value of 99%, and positive predictive
value of 69% [31, 39–41]. NrTMS can be completed
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before operation, which is of great significance to the
formulation of surgical plans. Preoperative localization
of language function using nTMS is helpful to reduce
the incision and improve the accuracy of intraoperative
cortical electrical stimulation; therefore, functioning lan-
guage regions under intraoperative examination should
be expanded and not just limited to known anatomic
areas [42]. Language mapping by nrTMS can help iden-
tify language-eloquent areas for patients not eligible for
awake surgery and can be used for smaller craniotomies
and focused intraoperative DES, increasing efficiency
and safety [31].
NTMS mapping is highly reliable and can significantly

shorten intraoperative DES mapping, but it still can not
replace DES or interoperative monitoring (IOM) com-
pletely. On the contrary, nTMS serves as a valuable sup-
plement for IOM but not a competing modality [43].
They should be used together to optimize the patient’s
selection and approach planning, accordingly accelerat-
ing the surgery and having better oncological and func-
tional outcomes [15, 44].

nTMS and fMRI
At present, fMRI is the most frequently applied imaging
methods for motor and linguistic function localization be-
fore operation. Compared with fMRI, nTMS imaging has
better time resolution and does not require complex
post-processing analysis. It also can be applied to patients
with claustrophobia who can not complete the MRI exam-
ination [45]. The advantages and disadvantages of nTMS
compared to fMRI and DES are shown in Table 1.
Researches showed that fMRI was less reliable for motor

mapping in patients with brain tumor, especially in the re-
gions near the lesion [46, 47]. NTMS showed a better
tracking efficiency than fMRI in cases that the cortical tract
origin was very close to a brain tumor probably because the
tumor influenced the neurovascular coupling. When blood
oxygenated level-dependent signal physiology was altered,
nTMS appeared to be a better option [48].
Scientists have reported the combined use of nTMS

and diffusion tensor imaging fiber tracking (DTI-FT) in
the cortical spinal tract (CST) [48]. The DTI-FT based
on nTMS is proved to be a more dependable and precise

Fig. 1 The procedure of nTMS motor mapping and image of nTMS-based DTI tracts. (A) Upload T1-weighted image. (B) Overlay of the 3D head
model derived from MRI imaging and the actual patient head by means of surface registration to enable real-time neuronavigation. (C) Motor
mapping stimulation. (D) Mark the nTMS positive spots on the cortex. (E) Left, nTMS-based DTI tracts: cortical nTMS positive spots (yellow) and
nTMS-based DTI tracts (blue); Right, image fused with MRI: tumor (red), cortical nTMS positive spots (yellow), and nTMS-based DTI tracts (blue).
DTI diffusion tensor imaging, MR magnetic resonance, nTMS navigated transcranial magnetic stimulation
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tool to reconstruct the CST compared with the standard
anatomical tractography. The functional and anatomical
data acquired from the somatotopic reconstruction
make it possible to assess the spatial correlation between
the motor fibers and the lesion and improve the evalu-
ation of the risks of tumor resection. In addition, the
nTMS-based DTI-FT of the CST is able to use during
surgery as a guide for orienting DES and lesion resec-
tion. Recent study showed that nTMS mapping espe-
cially nTMS-based DTI-FT can be served as a suitable
surgical technique for motor-eloquent lesions and is
likely to promote the risk/benefit analysis, resection ex-
tent, and outcomes [48–50].
The identified language-positive nrTMS spots can also

be used as regions of interest (ROIs) for nTMS-based
DTI-FT. Sollmann et al. did preoperative nrTMS lan-
guage mapping in 40 patients and defined each error
categories separately as a ROI, which was used for
function-specific nTMS-based DTI-FT. Their results
suggested that using different error categories as ROIs
could result in better guidance during operation [51].

Clinical use of nTMS in neurosurgery
It is a great challenge for neurosurgeons and patients to
perform a brain tumor resection located at or near the
motor eloquent area. In brain tumor surgery, preserving
neurological function and taking maximal resection are
major principles, and neurosurgeons frequently encoun-
ter a dilemma between conservation of motor function
and completeness of resection. Therefore, in order to re-
duce motor deficits, preoperative functional localization
of nTMS is necessary. Intracranial lesions, such as ische-
mia or tumors, are likely to result in the displacement
and remodeling of motor and speech areas. NTMS can
accurately determine the displaced functional areas, thus
providing assistance for surgical planning [52]. It is re-
ported that nTMS not just affects indication and plan-
ning in surgery but also results in a higher rate of gross
total resection and a lower rate of surgery-related par-
esis. Expanding indications for surgery and the extent of
resection according to nTMS results enables more

patients to undergo surgery and lead to better outcomes
and high survival rates [44].
Krieg compared the surgical outcome of patients with

motor eloquent metastatic lesions who received pre-
operative nTMS-based motor mapping with those that
did not. Patients receiving nTMS had a lower rate of re-
sidual tumor, smaller craniotomies, shorter operation
time, and decreased surgery-related paresis [53]. Krieg
comprehensively studied the impact of preoperative
motor mapping by nTMS on different clinical outcome
parameters within a homogeneous cohort of high-grade
glioma patients. The results demonstrated that patients
who underwent nTMS preoperative mapping had
smaller craniotomies and less residual tumor tissues
[54]. Picht used nTMS in a group of patients with gli-
omas and found nTMS mapping could change the ther-
apy planning into early and more extensive resection.
The median change of tumor volume from baseline to 1
year was − 83% in the nTMS group, but + 12% in the
comparison group [55].
Functional mapping with nTMS is available not only

in tumorous brain lesions, but also within hypervascular-
ized cortical areas [56]. Many studies had shown that
nTMS can serve as a powerful tool to schedule planning
prior to surgery for patients with arteriovenous malfor-
mation and cavernous angiomas, and it can also help
optimize treatment planning [36, 57].
The mapping based on nTMS can visualize the lan-

guage network more efficiently and can also detect cor-
tical plasticity induced by an intra-hemispheric
tumor-induced cortical plasticity. It can be used to for-
mulate a tailored surgical plan which could preserve lan-
guage function after the surgery. This tool could play a
supplementary role for neurosurgeons in dealing with
patients with potential language-eloquent tumors, but
not applicable for awake surgery [58].
Besides surgical planning, the nTMS data and

nTMS-based tractography are far beyond its current ap-
plication. Schwendner implemented nTMS motor map-
ping in patients with intracranial metastases during
routine radiotherapy. The results showed that it can sig-
nificantly reduce the dose applied to the motor cortex

Table 1 Comparison among nTMS, DES, and fMRI

nTMS DES fMRI

Safety issue Safe, noninvasive Invasive Safe, noninvasive

Accuracy High accuracy Gold standard for mapping of
motor and language

Accuracy is affected by patient’s cooperation
Less reliable for motor mapping in patients
with brain tumor

Maneuverability Simple
Do not need patient’s cooperation

Complex Require complex post-processing analysis
Need patient’s cooperation

Expenses Low High Low

Level of comfort Well tolerated in motor mapping
A little uncomfortable in language mapping

Invasive Comfortable but can not be applied to
claustrophobic patients
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while not affecting the treatment doses for the planning
target volume [59].
NTMS can also be used in the prediction of recovery

of paralysis. One study demonstrates that nTMS results
before and after surgery have the potential to predict the
motor function recovery after glioma resection. At 1
week after surgery, positive MEPs induced by nTMS sig-
nify a better recovery from postsurgical neurological def-
icits [60]. Peters examined the association of MEPs with
lower extremities outcomes in a well-defined cohort of
chronic, stable stroke survivors. They found MEP la-
tency appears to be an indicator of lower extremities im-
pairment and gait [61].

Broad application of nTMS
Single-pulse TMS can provide insight into the excitability
and integrity of the CST [62], and paired-pulse TMS can
provide insight into the excitability and integrity of corti-
cocortical connections [63]. Common evaluation parame-
ters of MEP include amplitude, latency, and central motor
conduction time [64]. In clinical application, location and
strength of the electric field could result in alterations in
MEP amplitudes. Schmidt et al. demonstrated that the
variability of cortical spinal excitability (CSE) is decreased
by controlling the physical parameters via navigation.
NTMS can help accurately identify and sustain nTMS
coil’s location to the targeted muscle’s representation on
the cortex, and this allows increasing the accuracy of
nTMS motor mapping and the assessing of CSE [65].
Studies have used nTMS to evaluate the function of

upper motor neurons in patients with amyotrophic lat-
eral sclerosis (ALS). The RMT was significantly higher
in ALS patients, and the mean motor mapping areas
were smaller in patients with ALS than in controls. They
found nTMS is a promising method for assessing upper
motor neuron function in ALS and may clarify the
pathogenic process of neurodegeneration and help estab-
lish novel diagnostic and prognostic models [66].
In recent years, preservation of language and motor func-

tion had been prioritized over other necessary functions. Sev-
eral centers also used TMS to map further essential brain
functions [5, 67]. Since TMS has been applied for mapping
of neuropsychological cortical function, it seems feasible to
map different neuropsychological functions more accurately
by nTMS. It is reported that nTMS is available to accurately
map calculation function at cortex [68] and cortical face pro-
cessing function in healthy subjects [69].
An international investigation obtained level A evidence

in determining the efficacy of repetitive TMS (rTMS) on
neuropathic pain [70, 71]. In most rTMS studies, stimulat-
ing the motor cortex at the opposite side of the aching
side showed analgesic effects, regardless of the location of
the pain [72, 73]. Few studies reported using
image-guided navigated systems to identify motor cortex

in pain treatment by rTMS [71, 74]. An image-guided nav-
igated procedure might provide a customized solution for
each patient receiving rTMS pain treatment. In one study,
the analgesic effects produced by nrTMS were compared
with those by non-navigated rTMS, and they found that
there was a prolonged effect after stimulating the painful
limb’s cortical motor representation by nrTMS [71].

Limitation of nTMS
It should be noted that nTMS can produce mapping of cor-
tical areas that are close to the surface and therefore reach-
able by the magnetic field. This signifies that mapping
frontobasal and temporomesial gyri are not available, and
similar to that, the mapping of the brain region covered by
big meningiomas or big arachnoid cysts is unavailable.

Conclusions
NTMS is the latest technology in the functional
localization of the cerebral cortex, which plays an im-
portant role in surgical planning, patient consultation,
and risk assessment. The results show that the accuracy
of nTMS in locating motor and language functions is
similar to that of DES, higher than that of fMRI, and it
is easy to operate. Therefore, it is recommended that
nTMS can be used routinely to locate functional areas in
patients with occupied functional areas. NTMS is a use-
ful supplement for established IOM workflows while
planning and conducting surgery in suspected motor
eloquent regions. NTMS has high application value in
the treatment of neurological and psychiatric diseases.
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