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Abstract

Background: Much still remains unknown about the pathogenesis of brain arteriovenous malformations (AVMs).
Previous studies have revealed the abnormal expression of various angiogenesis-related genes in AVMs. To further
understand this disease, we sought to identify genes differently expressed in AVMs by means of the gene
microarray technique.

Methods: Nine AVMs specimen and nine samples of normal vessels are collected. Total RNA isolated from these
specimen is hybridized with Oligonucleotide array and gene analysis was conducted. Analyzing data with the help
of significance analysis of microarrays (SAM) and a free web-based molecular annotation system 3.0 (MAS 3.0).

Results: The SAM method identify 37 gene significantly up-regulated and 10 genes down-regulated in AVMs.

Conclusions: Among those genes, VACN, SPARK and ARHGAP18 seem to play a facilitating role during the genesis
of AVMs. Multiple pathways, as MAPK pathway, may also be involved.

Keywords: Brain arteriovenous malformations, Gene microarray technique, VCAN, SPARK, ARHGAP18, MAPK
pathway

Background
Arteriovenous malformations (AVMs) is a vascular mal-
formation mainly happens in the central nervous system.
Though AVMs only occurs at 0.01% of the population, it
accounting for 3% of strokes and 9% of subarachnoid
hemorrhages [1], leading to catastrophic health prob-
lems. Pathologically, AVMs are complexes of some
curved vessels directly connect between the arteries and
veins, lacking the intervening capillaries [2]. For this fea-
ture, the high-pressure blood flow from the arteries
drains directly into venous system, leading to venous en-
gorgement which resulting in edema and irritating the
surrounding brain tissue, consequently causing clinical
symptoms [3, 4]. Previously, AVMs is treated as a kind
of congenital disease. Recent research reveals it could be
a developing one [5]. AVMs’ genesis is not fully revealed

yet. In this trial, we collect 9 AVMs samples and 9 nor-
mal vessels as control, and use the method of gene mi-
croarrays technique to analysis the differential expressed
genes in AVMs.

Patients and Methods
Patients and specimens
We reviewed all patients treated for AVMs within
10 years from Beijng Tiantan hospital. For excluding the
potential impact, patients received interventional treat-
ment or radiotherapy before the resection of the AVMs
lesions were excluded. All the AVMs samples were char-
acteristics both pathologically and radiologically. The
normal brain vessels were obtained from nine patients
receiving temporal lobectomy for medically intractable
seizure. Right after resected from the patients, the brain
tissues of the AVMs lesions were removed and vessels of
the seizure lesions were isolated. All tissues in both
groups have been certification of disease by pathologists.
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Method
Total RNA isolation
All samples were snap-frozen in liquid nitrogen within
15 min right after they were isolated. In our trial, the
RNA was isolated from these specimens with the use of
a Trizol method (Invitrogen cooperation, America).
After isolation, the total RNA was purified by the
NucleoSpin® RNA clean-up kit (Macherey-Nagel cooper-
ation, Germany).

Synthesis of biotin-labeled complementary RNA and
hybridization
Taking 5 mg total RNA as template for transcription to
synthesis double chain DNA, double-stranded cDNA is
purified by NucleoSpin R Extract 2 kit (Macherey-Nagel
cooperation, Germany). And then, we use cDNA to syn-
thesis cRNA, then the AVMs samples were labeled with
Cy3-dCTP and Cy5-dCTP (GE healther). All the sam-
ples are marked by Universal Human Reference RNA.

cRNA hybridization and washing
The sample of 2oul is hybridized to the gene microarrays
(Illumina, San Diego, CA). The arrays are washed and
then they are scanned with dual laser scanner
(LuxScanTM 10K) according the manufacturing protocol
and producing an image data.

Real-Time PCR
Two genes, VACN and SPARC were selected randomly
to be confirmed with real-time quantitative reverse tran-
scription PCR (Real-time qRT-PCR) analysis. Total RNA
was extracted from 9 AVMs tissues as mentioned previ-
ously in microarray experiment. Reactions were carried
out by Real-time quantization PCR apparatus (MJ Re-
search, US). Fluorescence changes were monitored after
each cycle, and melting curve analysis was done at the
end of cycles to verify the identity of PCR product. Aver-
age cycle threshold (Ct) values were calculated from
triplicate reactions.

Data analysis
Those image data is transformed into numerical infoma-
tion with the help of Luxscan 3.0 image analyzing soft-
ware (CapitalBio corporation). Then normalize those
data by Lowes’s method. use two class unpaired in SAM
(significant analysis of microarray) to confirm the differ-
ential expressed genes (fold change ≥1.5 or ≤0.67, false
discovery rate ≤0.5). After that, those genes were
analyzed by MAS 3.0.To evaluate the reliability of data
obtained from the chips, Real Time qRT-PCR was used
to check gene VACN and SPARC.

Result
Forty-six genes met the rank-sum criteria for signifi-
cance. Table 1 demonstrates the 37 gene up-regulated
and 10 gene down-regulated. Analyzed by MAS 3.0, we
identify genes and molecular pathways that may have
significant impact on the genesis of AVMs as Tables 2
and 3 listed. Those genes involve in multiple pathways,
e.g. cell adhesion molecules, tight junction, regulation of
actin cytoskeleton and MAPK signaling pathway. Among
all those genes and pathways, gene VACN, SPARK and
ARHGAP18 and the MAPK pathway are more likely to
be related to AVMs.
The Real Time qRT-PCR was used to check the genes

(VACN and SPARC) that were selected from the genes
we are interested in. the two genes were up-regulated on
basis of data obtained from chips. Consequently, the re-
sults of the Real Time RT-PCR were completely in
agreement with the data obtained from the chips, which
demonstrated that the differential expressed genes ob-
tained by the probes were confirmed with high reliability
and veracity (Fig. 1).

Discussion
AVMs is a kind of lesions with an abnormal vessel
phenotype. Little is known about its genesis. There
has been a growing number of clinical and experi-
mental evidence indicating that it may undergo
process of significant vascular remodeling and angio-
genesis [6, 7]. Angiogenesis is a biological process de-
scribing new capillaries forming from pre-existing
vessels [8], consistsing of a sequence of multiple
phases including suspension of vessel basement mem-
brane, migration and proliferation of endothelial cells,
formation new vessel basement membrane [9]. Nu-
merous regulatory factors must be involved to regu-
late these process, and they are more likely to be
related to growth factors, adhesion molecules, and
matrix-degrading enzymes receptor [10]. Previous
studies indicate the extracellular matrix, endothelial
attachment, migration and proliferation of endothelial
cells seem to involve in the developing of AVMs [7].
VCAN gene, containing 15 exons, encodes protein

Versican, a protein belongs to the family of hyaluronan-
binding proteoglycans, which is regulated by the splicing
of the mRNA alternatively [11, 12]. Versican participates
in multiple physical and pathological processes, includ-
ing cell adhesion and extracellular matrix assembly [13].
Structurally, two globular domains, G1 at the

N-terminals and G3 at the C-terminals, consist the core
protein of Versican. They can interact with various
extracellular matrix [14]. Alternative expression of exons
7 and 8 of the VCAN gene, generates four isoforms of
Versican with different number of chondroitin sulfate
chains [15]. There is considerable evidence to indicate
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the different expressed chondroitin sulfate may be essen-
tial in modulating cell adhesion [16].
The activity of Versican could be altered by selective

proteolysis of its domain while vascular system is under-
going changes [17, 18]. Lots of previous studies show
that Versican is a kind of anti-adhesive protein, mainly
conducted by the G1 domain of this protein. However,
some investigations find that the G3 domain of Versican
can promote cell adhesion through activating focal adhe-
sion kinase [19]. So it puts forward a possibility that dif-
ferent breakdown products of this protein might
influence cell adhesion in different ways [20]. During in-
flammatory response, Versican can influence the adhe-
sion of myeloid and lymphoid [21]. While entering
tissues, they come into contact with some specific com-
ponents of Versican to promote their adhesion to matrix
[22]. Immunohistochemistry demonstrated a striking
loss of Versican in the course of vessel developing in the
lower dermis [23], which on the contrary may suggest
the over expression of Versican can inhibit the normal
formation of vessels.
The SPARC gene is a single copy gene with a high de-

gree of evolutionary conservation which has been local-
ized to chromosome 5q31-33. It encode a secreted
protein acidic and rich in cysteine (SPARC). SPARC be-
longs to a group of matrix associated factors that medi-
ate cell matrix interactions [24]. This group of proteins
show similar functions for they are found expressed
while tissues are undergoing changes in cell matrix or
cell-cell contact [25]. SPARC is a highly conserved pro-
tein with anti-adhesive properties, inducing cell round-
ing, inhibiting cell spreading, reorganizing of actin stress
fibers, and delaying cell proliferation.
SPARC is found to suppress tumor growing in divers

systems [26]. Over expression of SPARC can lead to a
better prognosis in neuroplasm, probably due to its anti-
angiogenic activity reducing the angiogenesis of the le-
sions [27]. Also, SPARC could promote endothelial cell
apoptosis to decrease angiogenesis. A possible way of
SPARC inhibiting angiogenesis is to interfere with the
binding of pro-angiogenic factors, such as vascular endo-
thelial growth factor [28]. According to various observa-
tions in animal models, SPARC could also block the
function of some activators of angiogenesis, such as an-
giogenic growth factors [29].
Previous study has demonstrated evidences for the im-

portant role of SPARC in regulating cell proliferation
[30]. SPARC can act as inhibitors of cell proliferation in

Table 1 Differential expressed genes

Gene Fold change q-value (%)

MBP 4.25 0.00

NP_631958 3.85 0.00

PLP1 3.84 4.10

3.83 0.00

CPM 3.66 0.00

GANC 3.37 2.61

LAM5_HUMAN 3.09 0.00

FKBP5 3.06 0.00

EVI2B 2.89 0.00

RNASE6 2.81 0.00

SPARC 2.71 0.00

VACN 2.60 2.61

CD3D 2.57 4.10

HCLS1 2.53 0.00

2.29 0.00

SLC31A2 2.22 0.00

2.12 4.10

QPCT 2.05 4.10

ARHGAP18 1.97 4.10

ZA20D2 1.95 0.00

1.93 2.61

TCA_HUMAN 1.93 0.00

NP_443112 1.90 2.61

RAB31 1.86 4.10

NP_060910 1.85 0.00

FCGR2A 1.82 0.00

IL16 1.81 0.00

ARHGDIB 1.80 2.61

PRG1 1.79 0.00

CD53 1.79 2.61

SAP30 1.79 0.00

LYN 1.70 2.61

NP_054778 1.69 4.10

MNDA 1.67 2.61

C1orf38 1.62 3.53

PREX_HUMAN 1.62 2.61

TMSB4Y 1.52 4.10

PRPSAP1 0.61 0.00

0.44 0.00

FBXO25 0.40 0.00

0.39 3.53

SLC13A3 0.38 0.00

DUSP2 0.37 0.00

CRABP2 0.23 3.53

Table 1 Differential expressed genes (Continued)

SLC13A4 0.21 0.00

COCH 0.19 0.00

SERPIND1 0.09 0.00
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several types of cells [31]. It has also been observed to
inhibit endothelial cell’s proliferation, spreading and mi-
gration in cells from different sources [32].
ARHGAP18 is another gene we are interested in. This

gene encode a novel RhoA GTPase-activating protein
(GAP) which involves in cell shape rugelating, cell

migrating and spreading. Immunofluorescence analysis
revealed that GAP exist in the leading edge of cytoplasm
during cell spreading and migration. While the ARH-
GAP18 gene is absence, the process of cell shape regu-
lating and focal adhesions organization are interrupted.
This protein regulate those process through GAP activity

Table 2 GO terms of differential expressed genes

GO P-value (%) Q-value (%) Protein FC

Protein binding 6.34E-16 0.0 HCLS1 2.53

LYN 1.70

ARHGDIB 1.80

ARHGAP18 1.97

CD3D 2.57

Copper ion binding 3.74E-05 0.0 SLC31A2 2.21

SPARC 2.71

Receptor activity 7.35E-05 0.0 MS4A6A 3.83

FCGR2A; 1.82

ADRA2C 0.44

KLRK1 0.39

Sodium ion binding 1.11E-04 0.0 SLC13A3 0.38

SLC13A4 0.21

Calcium ion binding 2.40E-04 0.0 SPARC 2.71

CAPN3 3.37

VCAN 2.60

Sugar binding 2.59E-04 0.0 VCAN 2.60

KLRK1 0.39

Mitogen-activated protein kinase 3.90E-04 0.0 DUSP2 0.36

GTPase activator activity 4.23E-04 0.0 ARHGDIB 1.80

ARHGAP18 1.97

Actin binding 7.86E-04 0.0 GMFG 2.29

TMSB4Y 1.51

Hydrolase activity 3.34E-01 0.0 RNASE6 2.81

DUSP2 0.36

FC Fold Change, q-value false positive rate

Table 3 Pathway analysis for AVMs’ differential expressed genes

Pathway P-value (%) Q-value (%) Gene FC

MAPK signaling pathway 0.219 0.0 DUSP2 0.36

Cell adhesion molecules 0.113 0.0 VCAN 2.60

Tight junction 0.114 0.0 HCLS1 2.53

Galactose metabolism 0.023 0.0 GANC 3.36

Primary immunodeficiency 0.031 0.0 CD3D 2.57

Starch and sucrose metabolism 0.046 0.0 GANC 3.36

Pathogenic Escherichia coli infection 0.048 0.0 HCLS1 2.53

Natural killer cell mediated cytotoxicity 0.116 0.0 KLRK1 0.39

Regulation of actin cytoskeleton 0.178 0.0 TMSB4Y 1.51

FC Fold Change, q-value false positive rate
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[33, 34]. Cell shaping and focal adhesion organization
are essential procedures to form normal vessel
structures.
The Mitogen-activated protein kinase (MAPK) path-

way may have an outstanding impact on the process of
AVMs’ genesis. MAPK pathways could regulate many
cellular functions including cell proliferation, differenti-
ation, migration and apoptosis [35]. MAPK signaling
pathway provide a connection between transmembrane
signaling and gene transcription in response to various
environmental factors such as cytokines, growth factors
and inflammation. The MAPK pathway can be attenu-
ated by a family of dual specificity MAPK phosphatases.
We find a gene named DUSP2 is down-regulated in
AVMs samples. This gene expresses a protein belonging
to the dual specificity protein phosphatase subfamily
that can inactivate their target kinases by dephosphory-
lating both the phosphoserine/threonine and phospho-
tyrosine residues. And in turn negatively regulate the
MAPK pathway [36].

Conclusion
The genesis of AVMs is not fully understand yet, our
trial has discovered some genes and cell signal pathways
that are expressed differently in AVMs that mainly
related to process of angiogenesis. We hope those genes’
discovery may attract more attention on the research of
AVMs.
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